Bioinspired Hyaluronic Acid‐Based Hydrogel Fuels Bi‐Directional Lung Organoid Maturation via PIEZO1 and ITGB1 Mediated Mechanosensation

Author:

Zhang Junyao12,Marciano Daniele3,Wang Lei12,Wang Weiwei2,Gossen Manfred2,Yang Mengting1,Peng Tingying4,Gautrot Julien3ORCID,Xu Xun2ORCID,Ma Nan12ORCID

Affiliation:

1. Institute of Chemistry and Biochemistry Free University of Berlin 14195 Berlin Germany

2. Institute of Active Polymers Helmholtz‐Zentrum Hereon 14513 Teltow Germany

3. School of Engineering and Materials Science Queen Mary University of London London E1 4NS UK

4. Institute for Computational Biology Helmholtz Munich 85764 Neuherberg Germany

Abstract

AbstractLung diseases are one of the leading causes of global mortality. Advances in induced pluripotent stem cell (iPSC) differentiation have enabled the creation of bronchiolar and alveolar lung organoids, advancing research on lung conditions. Traditional Matrigel encapsulation, reliant on the spontaneous assembly and propagation of cells with limited external intervention, often results in variability and low reproducibility. The absence of hyaluronic acid (HA) in Matrigel, a key lung extracellular matrix component, limits bronchiolar and alveolar cell differentiation, reducing the efficacy and reproducibility of iPSC‐derived organoid generation. To address this, a novel hybrid hydrogel combining HA and 23% Matrigel, inspired by the natural lung environment, is developed. This hydrogel offers improved biochemical support and viscoelastic properties, significantly accelerating organoid development. Within eight days, the hydrogel produces uniformly sized organoids containing both bronchiolar and alveolar epithelial cells. Increased levels of active mechanosensors and transducers, including PIEZO1, Integrin, and Myosin, suggest that the hydrogel's altered viscoelasticity triggers a mechanotransduction cascade. This bioinspired hydrogel provides a robust, fast model for biomedical research, facilitating rapid drug screening, respiratory disease treatment studies, and surfactant trafficking investigations. Furthermore, it enables the exploration of underlying biomechanical mechanisms to enhance the controllability of organoid generation and maturation.

Funder

China Scholarship Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3