Modeling and Quantifying Optimal Dynamics of Extraction of Charge Carriers in the Operation of Perovskite Solar Cells

Author:

Mehdizadeh‐Rad Hooman12,Ram Kiran Sreedhar1,Setsoafia Daniel Dodzi Yao1,Ompong David12,Singh Jai12ORCID

Affiliation:

1. Faculty of Science and Technology Charles Darwin University Darwin NT 0909 Australia

2. Energy and Resources Institute Charles Darwin University Darwin NT 0909 Australia

Abstract

AbstractIn this paper, a mathematical model and the relevant computer code are developed to quantify the extraction probability rate of charge carriers (EPRCC) in a perovskite solar cell of the structure: Glass/ITO/PEDOT: PSS/CH3NH3PbI3/PC60BM/Al to investigate the influence of interfaces and grain boundaries. It is found that, without passivation, the probability of an electron generated near the anode reaches to the cathode is only 35%, while by passivating the interfaces and grain boundaries, this probability increases to about 60% at maximum power point condition. Likewise, without passivation, the probability of a hole generated near the electron transport layer‐active layer interface reaches to the hole transport layer is only 15%, while by passivating the interfaces and grain boundaries, this probability increases to about 45% at maximum power point condition. The same calculation has been done at the short‐circuit current condition, and it is found that at the maximum power point condition, passivation works better for increasing the EPRCC than at the short circuit current condition. The authors have also investigated the influence of grain boundary sizes on the EPRCC, and the results show that the EPRCC is almost grain boundary size independent.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3