Flat Solenoidal Ice‐Binding Proteins as Scaffolds for Solid‐Binders

Author:

de Haas Robbert J.1ORCID,van Ossenbruggen Jannick1,van der Hoeven Jeffrey1,Timmermans Roel J.1,Tas Roderick P.2ORCID,Voets Ilja K.2ORCID,de Vries Renko1ORCID

Affiliation:

1. Physical Chemistry and Soft Matter Wageningen University and Research Stippeneng 4 Wageningen 6708 WE The Netherlands

2. Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems Eindhoven University of Technology De Zaale Eindhoven 5612 AJ The Netherlands

Abstract

AbstractSolid interfacing biomaterials is a crucial aspect of bionanotechnology and important for applications such as biosensing. Because of their potentially large contact area, flat solenoidal proteins are ideal scaffolds for designing proteins binding to surfaces of man‐made solids such as minerals, metals, and plastics. To explore this opportunity, a naturally occurring flat solenoidal protein: the Rhagium inquistor Antifreeze Protein from the insect Rhagium inquisitor is re‐designed. By mutating 4, 6, and 10 out of its 4 × 5 arrays of threonines into arginines, it have arrived at the silica‐binding proteins RiSiBP‐4, RiSiBP‐6, and RiSiBP‐10. Variants with increasing numbers of arginines bind stronger to silica, but are also less stable and increasingly difficult to produce. It is found that the RiSiBP‐6 variant binds strongly to silica yet still has good stability and easy production. It is shown that sfGFP‐RiSiBP‐6 fusions allow for the functional display of a monolayer of sfGFP cargo on silica surfaces, suggesting the general usefulness of flat solenoidal proteins as scaffolds for designing solid‐binding proteins.

Funder

H2020 European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3