Contact Geometry and Pathway Determined Carriers Transport through Microscale Perovskite Crystals

Author:

Zhao Zhibin1,Li Yuelong2,Ni Lifa1,Nam Jongwoo3,Adijiang Adila1,Zhang Xubin1,Li Shanshan1,Wang Mingwei1,Lee Takhee3,Xiang Dong1ORCID

Affiliation:

1. Institute of Modern Optics and Center of Single Molecule Sciences Key Laboratory of Micro‐scale Optical Information Science and Technology Nankai University Tianjin 300350 China

2. Institute of Photoelectronic Thin Film Devices and Technology Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin Solar Energy Research Center Nankai University Tianjin 300350 China

3. Department of Physics and Astronomy, and Institute of Applied Physics Seoul National University Seoul 08826 Korea

Abstract

AbstractWith the miniaturization of crystals‐based photoelectric devices, electrode contact‐geometries may play a critical role in determining the device performance. However, investigation of the role of electrode contact geometries in situ faces great challenges due to the electrode contact geometry is typically unmodifiable. To this end, a kind of liquid metal is employed as an adaptive‐deformable electrode to study the carrier transport through perovskite microcrystals, in which the electrode contacts geometries/positions and thus the carrier‐pathways can be adjusted. Under light illumination, a spike feature of photocurrent is observed when carriers transport along the perovskite microcrystal surface upon an edge‐contact geometry, which is absent as the carrier mainly transport through crystal interior upon a top‐contact geometry. Switching, rectifying, and memristor functions are selectively realized just by modifying the contact geometry. The underlying mechanism for the observations is further elucidated. This study provides a platform for studying carrier transport through microscale crystals with adjustable contact geometry and supplies an approach for fabricating diverse functional devices by changing the electrode contact‐geometries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3