Growth‐Induced Extinction Development of Gold Nanoclusters as Signal Transducers for Quantitative Immunoassays

Author:

Kim Bong‐Geun1,Choi Yu Rim1,Kim Yerin1,Yoon Sang Bin1,Hwang Sukyeong1,Lee Suk Joong2,Na Hyon Bin1ORCID

Affiliation:

1. Department of Chemical Engineering Myongji University Yongin 17058 Republic of Korea

2. Department of Chemistry Korea University Seoul 02841 Republic of Korea

Abstract

AbstractSignal transducers are crucial in bioassay platforms for converting target detection into recordable signals. Commonly used color development for immunoassays involves enzymes and colorimetric substrates. However, due to cost and environmental issues, practical point‐of‐care testing requires alternative signal transducers. Growth‐induced extinction (absorption and scattering) of gold nanoclusters (AuNCs) is proposed as a novel approach for quantitative immunoassays. AuNCs devoid of localized surface plasmon resonance (LSPR) are used as seeds for growth reactions. Through reactions with a growth solution comprised of gold precursor and mild reductant, AuNCs of varying concentrations underwent controlled growth, resulting in nanoparticles of different sizes exhibiting distinct LSPR‐mediated extinction bands. Notably, the seed concentration exhibited a robust correlation with the resulting extinction of the grown particles on a small scale of 110 µL for a 96‐well microplate platform. To demonstrate this signal transduction mechanism, immunosorbent assays are performed using the conjugates of AuNC and detection antibody. The sandwich‐type assay successfully quantified a model antigen, human immunoglobulin G (hIgG), by monitoring LSPR wavelength and absorbance. This assay demonstrated a working range of 0.001–1 µg mL−1 and limit of detection of 1.19 ng mL−1. Signal transducers using the growth of AuNCs offer new alternative candidates for immunoassay platforms.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3