Impact of Silicon Ion Irradiation on Aluminum Nitride‐Transduced Microelectromechanical Resonators

Author:

Lynes David D.1,Young Joshua2,Lang Eric3,Chandrahalim Hengky1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Air Force Institute of Technology Wright‐Patterson Air Force Base OH 45433 USA

2. Ion Beam Laboratory Sandia National Laboratories Albuquerque NM 87123 USA

3. Department of Nuclear Engineering The University of New Mexico Albuquerque NM 87131 USA

Abstract

AbstractMicroelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro‐robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is unveiled. Aluminum nitride on silicon (AlN‐on‐Si) and AlN‐SiO2‐Si bulk acoustic wave (BAW) resonators are designed and fabricated. The devices are irradiated using 2 MeV Si+ ions at various fluxes up to a total fluence of 5 × 1014 cm−2. A time anneal is conducted to characterize device recovery. Scattering (S‐) parameters are measured in situ. Specific damage coefficients are derived to describe the radiation effect on resonant frequency (fr), quality factor (Q), motional resistance (Rm), and electromechanical coupling factor (). Furthermore, the damage coefficients for the bulk material properties of elastic modulus (E) and the piezoelectric coefficient (d31) are found.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impacts of Heavy Particle Irradiation on Very High Frequency Microelectromechanical Resonators;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3