Guided Mode Induced Surface Phase Mutation for Enhanced SPR Biosensor with Dual‐Parameters Interrogation

Author:

Liu Zhenchao12,Guo Tingbiao1,Tan Qin1,Fan Houxin1,He Sailing23ORCID

Affiliation:

1. Centre for Optical and Electromagnetic Research College of Optical Science and Engineering Zhejiang University Hangzhou 310058 P. R. China

2. Taizhou Hospital Zhejiang University Taizhou 318000 P. R. China

3. Department of Electromagnetic Engineering School of Electrical Engineering KTH Royal Institute of Technology Stockholm SE‐100 44 Sweden

Abstract

AbstractOngoing research on the sensitivity and integration of refractive index‐based biosensors has resulted in significant advancements. Here, the study presents an enhanced surface plasmon resonance biosensor that integrates imaging technology and features dual‐parameter interrogation (intensity and phase) with guided mode coupling. By depositing a silica‐waveguide‐layer on a metal‐layer, two‐mode coupling is established to generate a high Q resonance and induce a phase mutation. The sensing performance experiment demonstrated a phase sensing sensitivity of 1.1 × 105 degree RIU−1, Q‐value of the resonant peak up to 314, and figure of merit of 300 RIU−1, superior to most standard plasmonic sensors. An in‐line phase‐polarization modulation scheme combined with imaging technology is proposed to extract the resonant phase carrying refractive index information. Additionally, a pair‐prism module is designed to optimize the sensing system configuration. Meanwhile, dual‐parameters interrogation including the intensity and phase are demonstrated, which offers potential for complementary and multi‐sensing fusion applications. The intensity interrogation also shows a considerable sensitivity of 7.2 × 104 a.u. RIU−1. Furthermore, it is combined with microfluidic chip to detect of alpha‐synuclein protein closely related to Parkinson's disease, and the limit of detection can reach 300 pg mL−1 level, which indicated a considerable potential for high‐throughput diagnosis application.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3