Affiliation:
1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Advanced Negative Carbon Technologies Soochow University Suzhou 215123 P. R. China
Abstract
AbstractEffective electrocatalysts are crucial for facilitating the oxygen evolution reaction (OER), the anodic reaction of water electrolysis for renewable green hydrogen production. Perovskite oxides are a group of potential catalysts featuring the lattice oxygen mechanism (LOM) for OER, where O2 formation commences via a lattice oxygen redox process. The LOM pathway breaks the thermodynamic limitation of the adsorbate evolution mechanism (AEM) and achieves a high intrinsic activity. However, perovskite oxides often suffer high OER overpotentials due to the insufficient activation of the LOM pathway. Typically, the overpotential exceeds 300 mV at 10 mA cm−2. This greatly impedes the practical applications of perovskite oxide based OER catalysts. Here, it is demonstrated that the B‐site‐metal exsolution of a La0.6Sr0.4Fe0.8Ni0.2O3‐δ perovskite increases the activity of LOM by a factor of 3.8 at 400 mV overpotential. The activated LOM pathway leads to a 36‐mV reduction in the overpotential at 10 mA cm−2 (from 310 mV to 274 mV) and a 2× increase in the turnover frequency (TOF) at 450 mV overpotential. A membrane electrode assembly (MEA) water electrolyzer equipped with this LSFN‐based catalyst offers 1 A cm−2 current density at 2.46 V and 24‐h operation stability.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献