Super Black Coating on the Commercial Black Anodized Al(6061) by Direct and Scalable CVD–Growth of Carbon Nanofibers

Author:

Truong Thuy – Kieu1ORCID,Yuk Geun Tak1,Kim Joong Bae2ORCID,Youn Hongseok1ORCID,Rho Jinsung1ORCID

Affiliation:

1. Department of Mechanical Engineering Hanbat National University Daejeon 34158 South Korea

2. Department of Mechanical and Automotive Engineering Kongju National University Cheonan 31080 South Korea

Abstract

AbstractUsing carbon‐based super black coatings on optical devices can achieve superior stray light suppression for applications in astronomy. For the first time, the work presents carbon nanofiber‐based black coating on commercial anodized Al(6061), which facilitates the development of a highly effective route to directly integrate the carbon‐based material on the common substrate for optical baffles. The scalable and available structural engineering effect is synergized with the anodized Al(6061) coating with black dye composed of nickel catalyst and the intrinsic broadband light absorption of the CVD‐grown carbon material to ultimately achieve a superior broadband light absorber. Nickel catalysts embedded in anodized Al(6061) offer a practical pathway for carbon nanofiber growth through CVD without additional stacked catalysts. The CVD‐growing mechanism and CNF nanostructures are demonstrated through TEM and EDS element mapping, SEM, and Raman spectroscopy. CNF‐grown Al(6061) substrates offer above 99% broadband light absorption and low light reflectance below 1% in UV–vis–NIR and mid–IR ranges. This facile approach has been useful for super black coating on Al(6061)‐based complicated sculptures, such as concave substrate and an optical baffle. These results have demonstrated a facile method that can significantly impact the industrial scaling‐up of high‐quality, super‐black coating on spaceborne devices.

Funder

National Research Foundation of Korea

Ministry of Education

Defense Acquisition Program Administration

Ministry of Trade, Industry and Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3