High‐Performance Semitransparent Color Organic Photodiodes Enabled by Integrating Fabry–Perot and Solution‐Processed Distributed Bragg Reflectors

Author:

Kim Bo Youn1,Shafian Shafidah12,Kim Kyungkon1ORCID

Affiliation:

1. Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 South Korea

2. Solar Energy Research Institute Universiti Kebangsaan Malaysia Bangi Selangor 43600 Malaysia

Abstract

AbstractOrganic photodiodes (OPDs) have recently garnered attention as a competitive alternative to their inorganic counterparts, given their inherent advantages in solution processability, mechanical flexibility, and cost‐effective manufacturing. In this work, a novel method for fabricating high‐performance semitransparent color OPDs by integrating Fabry–Perot (FP) interferometer‐based color‐filtering electrodes and solution‐processed distributed Bragg reflectors (sDBRs) is introduced. The FP electrode provides color control by modulating the metal oxide layer thickness, irrespective of the photoactive layer's color. To overcome limitations related to light absorption and device transparency, this work employs a sDBR as a selective window reflector, allowing the OPD to retain its color while preserving semitransparency. The experimental findings demonstrate the successful integration of these components, resulting in semitransparent red, green, and blue (RGB) OPDs exhibiting significantly improved detectivity. The fabricated RGB‐OPDs achieve detectivity values of 4.07, 3.49, and 4.22 × 1010 cm Hz1/2 W−1 for red, green, and blue, respectively. This research highlights the efficacy of FP and sDBR color filters in realizing high‐performance color sensors and offer novel opportunities for semitransparent OPD integration with other optoelectronic devices.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3