Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles

Author:

Bodian Semyon123ORCID,Aytac‐Kipergil Esra12ORCID,Zhang Shaoyan12ORCID,Lewis‐Thompson India12ORCID,Sathasivam Sanjayan34ORCID,Mathews Sunish J.12ORCID,Alles Erwin J.12ORCID,Zhang Edward Z.1ORCID,Beard Paul C.12ORCID,Gordon Ross J.5,Collier Paul5,Parkin Ivan P.3ORCID,Desjardins Adrien E.12ORCID,Colchester Richard J.12ORCID,Noimark Sacha123ORCID

Affiliation:

1. Department of Medical Physics and Biomedical Engineering University College London London WC1E 6BT UK

2. Wellcome/ESPRC Centre for Surgical and Interventional Sciences University College London Charles Bell House, 67–73 Riding House Street London W1W 7EJ UK

3. Materials Chemistry Centre Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK

4. School of Engineering London South Bank University London SE1 0AA UK

5. Johnson Matthey Technology Centre Sonning Common Reading RG4 9NH UK

Abstract

AbstractCandle‐soot nanoparticles (CSNPs) have shown great promise for fabricating optical ultrasound (OpUS) transmitters. They have a facile, inexpensive synthesis whilst their unique, porous structure enables a fast heat diffusion rate which aids high‐frequency ultrasound generation necessary for high‐resolution clinical imaging. These composites have demonstrated high ultrasound generation performance showing clinically relevant detail, when applied as macroscale OpUS transmitters comprising both concave and planar surfaces, however, less research has been invested into the translation of this material's technology to fabricate fiber‐optic transmitters for image guidance of minimally invasive interventions. Here, are reported two fabrication methods of nanocomposites composed of CSNPs embedded within polydimethylsiloxane (PDMS) deposited onto fiber‐optic end‐faces using two different optimized fabrication methods: “All‐in‐One” and “Direct Deposition.” Both types of nanocomposite exhibit a smooth, black domed structure with a maximum dome thickness of 50 µm, broadband optical absorption (>98% between 500 and 1400 nm) and both nanocomposites generated high peak‐to‐peak ultrasound pressures (>3 MPa) and wide bandwidths (>29 MHz). Further, high‐resolution (<40 µm axial resolution) B‐mode ultrasound imaging of ex vivo lamb brain tissue demonstrating how CSNP‐PDMS OpUS transmitters can allow for high fidelity minimally invasive imaging of biological tissues is demonstrated.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Reference65 articles.

1. N. J.Dawson M. G.Kuzyk J.Neal P.Luchette P.Palffy‐Muhoray inSPIE Organic Photonics + Electronics Vol.8475 SPIE Bellingham WA2012 p.84750B.

2. Implementation of Soft-Lithography Techniques for Fabrication of Bio-Inspired Multi-Layer Dielectric Elastomer Actuators with Interdigitated Mechanically Compliant Electrodes

3. Graphene/elastomer composite-based photo-thermal nanopositioners

4. C.Tyagi A.Sharma inAIP Conf. Proceedings Vol.1675 American Institute of Physics New York2015 p.030055.

5. The use of combinatorial materials development for polymer solar cells

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3