Semiconductor‐Metal Hybrid Nanoparticle‐Based Hydrogels: Efficient Photocatalysts for Hydrogen Evolution Reaction

Author:

Schlenkrich Jakob123ORCID,Pluta Denis134ORCID,Graf Rebecca T.1234ORCID,Wesemann Christoph13ORCID,Lübkemann‐Warwas Franziska12ORCID,Bigall Nadja C.12356ORCID

Affiliation:

1. Institute of Physical Chemistry and Electrochemistry Leibniz University Hannover Callinstraße 3A 30167 Hannover Germany

2. Cluster of Excellence PhoenixD (Photonics, Optics and Engineering ‐Innovation Across Disciplines) Leibniz University Hannover 30167 Hannover Germany

3. Laboratory of Nano‐ and Quantum Engineering Leibniz University Hannover 30167 Hanover Germany

4. Hannover School of Nanotechnology Leibniz University Hannover Schneiderberg 39 30167 Hannover Germany

5. Cluster of Excellence CUI: Advanced Imaging of Matter Universität Hamburg 22761 Hamburg Germany

6. Institute of Physical Chemistry Universität Hamburg Grindelallee 117 20146 Hamburg Germany

Abstract

AbstractIn semiconductor‐metal hybrid nanoparticles, excited charge carriers can be separated efficiently by transferring the electron to the metal, because the Fermi level is located within the bandgap of the semiconductor. Besides charge carrier separation, the catalytically active surface of the metal enables the use of these charge carriers for further reactions. Due to limited colloidal stability, the application of nanoparticles in solution is challenging. To circumvent these difficulties, the destabilization can be used to build monolithic 3D (non‐ordered) gel‐like structures with retained high surface area and an ensured diffusion within the network. Here, the resulting nanoparticle‐based hydrogels of CdSe/CdS/Pt nanoparticles show photocatalytic hydrogen production rates up to 58 (mmol(H2))/(g∙h). Due to the self‐supporting network structure, colloidal stability is unnecessary, and the applicability is improved. By simply mixing semiconductor and semiconductor–metal hybrid nanoparticles before gelation, the synthesis of the gels allows the reduction of the metal content, which further tunes the photocatalyst.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3