Synergetic effects and inhibition mechanisms of the polysaccharide‐selenium nanoparticle complex in human hepatocarcinoma cell proliferation

Author:

Wu Qingxi12ORCID,Wang Xiaohui1,Hao Siwei1,Wu Yingchao1,Zhang Wenna12,Chen Lei12,Yan Chao12,Lu Yongming12ORCID,Chen Yan12ORCID,Ding Zhifeng3

Affiliation:

1. School of Life Sciences, Anhui University Hefei PR China

2. Key Laboratory of Eco‐engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing Hefei PR China

3. Department of Chemistry The University of Western Ontario London Canada

Abstract

AbstractBACKGROUNDActive components from natural fungal products have shown promising potential as anti‐tumor therapeutic agents. In the search for anti‐tumor agents, research to overcome the drawbacks of high molecular weight and low bioavailability of pure polysaccharides, polysaccharide‐conjugated selenium nanoparticles (SeNPs) has attracted much attention.RESULTSA novel polysaccharide‐selenium nanoparticle complex was produced, in which SeNPs were decorated with polysaccharide obtained from fermented mycelia broth of Lactarius deliciosus (FLDP). Transmission electron microscope, dynamic light scattering, and X‐ray photoelectron spectroscopy were utilized to characterize the FLDP‐SeNPs; and human hepatocarcinoma cell line (HepG2) was used to assess growth inhibition efficacy. The FLDP‐SeNPs that were prepared had a spherical shape with the smallest mean diameter of 32 nm. The FLDP‐SeNPs showed satisfactory dispersibility and stability after combination, demonstrating that a reliable consolidated structure had formed. The results revealed that FLDP‐SeNPs had notable growth inhibition effects on HepG2 cells. They reduced the membrane potential of mitochondria significantly, increased the generation of reactive oxygen species, enhanced levels of both Caspase‐3 and Caspase‐9, and led to the nucleus in a wrinkled form.CONCLUSIONThe FLDP‐SeNPs could exert a synergetic toxicity reduction and inhibition enhancement effect on HepG2 cells by inducing early apoptosis, through mitochondria‐mediated cytochrome C‐Caspases and reactive oxygen species‐induced DNA damage pathways. These results indicate that FLDP‐SeNP treatment of HepG2 cells induced early apoptosis with synergetic efficacy, showing that FLDP‐SeNPs can be useful as natural anti‐tumor agents. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3