Effects of multi‐walled carbon nanotubes on structures and properties of heat‐resistant poly(m‐phenylene isophthalamide)‐based hollow fiber ultrafiltration membranes

Author:

Koo Su‐Hyun1,Jee Min Ho2ORCID,Baik Doo Hyun1

Affiliation:

1. Department of Advanced Organic Materials and Textile System Engineering Chungnam National University Daejeon South Korea

2. Metrology & Measurement Division, Korean Agency for Technology and Standards (KATS) Ministry of Trade, Industry and Energy (MOTIE) Eumseong South Korea

Abstract

AbstractThis study is the first attempt to fabricate a heat‐resistant hollow fiber ultrafiltration membrane using poly(m‐phenylene isophthalamide) (PMIA) polymer material, which has rarely been used as conventional polymeric membrane materials. Multi‐walled carbon nanotubes (MWCNTs) are incorporated as reinforcing agents. The PMIA polymer synthesized for this study exhibited an inherent viscosity of 1.6 dL/g, confirming its suitability for membrane fabrication, and successful synthesis was verified through Fourier‐transform infrared analysis. To enhance the dispersibility of MWCNTs during dope solution preparation and their interaction with the PMIA matrix, MWCNTs were acid‐treated and surface characteristics of the acid‐treated MWCNTs were confirmed through x‐ray photoelectron spectroscopy analysis. Scanning electron microscope analysis revealed that the introduction of MWCNTs resulted in thicker PMIA hollow fiber ultrafiltration membranes with symmetrical finger‐like and sponge‐like pore structures. Interestingly, unlike the typical polymer composite systems containing MWCNTs, which often show a dependence on MWCNT content, the mechanical properties of the PMIA/MWCNT membranes in this study seem to exhibit high variability and are not contingent on the MWCNT content. Additionally, filtration performance studies demonstrated that the introduction of MWCNTs substantially increased water permeability, particularly at 1.0 wt% MWCNT content, resulting in a remarkable 130% enhancement compared to pristine PMIA membrane. Simultaneously, even with a small quantity of MWCNTs, the rejection performance of the PMIA/MWCNT membrane witnessed significant improvement due to the reduction in average pore size, effectively overcoming the commonly observed trade‐off phenomenon. In summary, this study clearly showed the effects and changes on the structure and properties of a heat‐resistant PMIA‐based hollow fiber ultrafiltration membranes due to the introduction of MWCNTs.Highlights Heat‐resistant poly(m‐phenylene isophthalamide)‐based hollow fiber ultrafiltration membranes Introduction of multi‐walled carbon nanotubes (MWCNTs) into PMIA membrane as a reinforcing agent Unique structural changes of PMIA membrane originated from the MWCNTs Enhanced tensile strength of PMIA/MWCNT membranes Simultaneous improvement of filtration performance due to MWCNTs

Funder

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

Reference37 articles.

1. Relationship between environment and sustainable economic development: a theoretical approach to environmental problems;Awan AG;Int J Asian Soc Sci,2013

2. The circular economy and circular economic concepts-a literature analysis and redefinition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3