A deep learning framework for analyzing cloud characteristics of aggregated convection using cloud‐resolving model simulations

Author:

Chen Yi‐Chang1ORCID,Wu Chien‐Ming1ORCID,Chen Wei‐Ting1ORCID

Affiliation:

1. Department of Atmospheric Sciences National Taiwan University Taipei City Taiwan

Abstract

AbstractThis study introduces a framework to extract the high‐dimensional nonlinear relationships among state variables for aggregated convection. The prototype of such a framework is developed that applies the convolutional neural network models (CNN models) to retrieve the cloud characteristics from cloud‐resolving model (CRM) simulations. CNN model prediction factors are hidden in the high dimensional weighted parameters in each neural network layer. Therefore, we can dig out relevant physics processes by iterating the CNN models' training process and eliminating the features with the physics explanation we can provide at a given stage. Within a few iterations, explainable nonlinear relationships among variables can be provided. We identified that the averaged cloud water path (CWP), the maximum value of CWP in each cloud, and the cloud coverage rate are essential for identifying aggregation. Furthermore, by analyzing the encoded channels of the CNN model, we found a strong relationship between aggregation, cloud peripherals, and fractal dimensions. The results suggest that the important nonlinear cloud characteristics for identifying the aggregation can be captured with the proper adjustment and limitation of the input data to the CNN models. Our framework provides a possibility that we can explore the high dimensional relationship between the physics process with the assistance of the CNN model.

Funder

Academia Sinica

Publisher

Wiley

Subject

Atmospheric Science

Reference15 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3