A spot‐specific range uncertainty framework for robust optimization of proton therapy treatments

Author:

Cohilis Marie1,Souris Kevin1,Buti Gregory1,Chang Chih‐Wei2,Lin Liyong2ORCID,Lee John A.1,Sterpin Edmond134

Affiliation:

1. Institute of Experimental and Clinical Research, UCLouvain, MIRO Lab Brussels Belgium

2. Department of Radiation Oncology Emory University Atlanta Georgia USA

3. Department of Oncology, KU Leuven Laboratory of Experimental Radiotherapy Leuven Belgium

4. Particle Therapy Interuniversity Center Leuven—PARTICLE Leuven Belgium

Abstract

AbstractPurposeAn accurate estimation of range uncertainties is essential to exploit the potential of proton therapy. According to Paganetti's study, a value of 2.4% (1.5 standard deviation) is currently recommended for planning robust treatments with Monte Carlo dose engines. This number is based on a dominant contribution from the mean excitation energy of tissues. However, it was recently shown that expressing tissues as a mixture of water and “dry” material in the CT calibration process allowed for a significant reduction of this uncertainty. We thus propose an adapted framework for pencil beam scanning robust optimization. First, we move towards a spot‐specific range uncertainty (SSRU) determination. Second, we use the water‐based formalism to reduce range uncertainties and, potentially, to spare better the organs at risk.MethodsThe stoichiometric calibration was adapted to provide a molecular decomposition (including water) of each voxel of the CT. The SSRU calculation was implemented in MCsquare, a fast Monte Carlo dose engine dedicated to proton therapy. For each spot, a ray‐tracing method was used to propagate molecular I‐values uncertainties and obtain the corresponding effective range uncertainty. These were then combined with other sources of range uncertainties, according to Paganetti's study of 2012. The method was then assessed on three head‐and‐neck patients. Two plans were optimized for each patient: the first one with the classical 2.4% flat range uncertainty (FRU), the second one with the variable range uncertainty. Both plans were then compared in terms of target coverage and OAR mean dose reduction. Robustness evaluations were also performed, using the SSRU for both plans in order to simulate errors as realistically as possible.ResultsFor patient 1, it was found that the median SSRU was 1.04% (1.5 standard deviation), yielding, therefore, a very large reduction from the 2.4% FRU. All three SSRU plans were found to have a very good robustness level at a 90% confidence interval while sparing OAR better than the classical plan. For instance, in nominal cases, average reductions in the mean dose of 15.7, 8.4, and 13.2% were observed in the left parotid, right parotid, and pharyngeal constrictor muscle, respectively. As expected, the classical plans showed a higher but unnecessary level of robustness.ConclusionsPromising results of the SSRU framework were observed on three head‐and‐neck cases, and more patients should now be considered. The method could also benefit to other tumor sites and, in the long run, the variable part of the range uncertainty could be generalized to other sources of uncertainty in order to move towards more and more patient‐specific treatments.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3