Improved endurance capacity of diabetic mice during SGLT2 inhibition: Role of AICARP, an AMPK activator in the soleus

Author:

Nakamura Shintaro1,Miyachi Yasutaka1ORCID,Shinjo Akihito1,Yokomizo Hisashi1,Takahashi Masatomo2,Nakatani Kohta2,Izumi Yoshihiro2,Otsuka Hiroko1,Sato Naoichi1,Sakamoto Ryuichi1,Miyazawa Takashi1,Bamba Takeshi2,Ogawa Yoshihiro1

Affiliation:

1. Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences Kyushu University Fukuoka Japan

2. Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation Kyushu University Fukuoka Japan

Abstract

AbstractBackgroundDiabetes is associated with an increased risk of deleterious changes in muscle mass and function or sarcopenia, leading to physical inactivity and worsening glycaemic control. Given the negative energy balance during sodium–glucose cotransporter‐2 (SGLT2) inhibition, whether SGLT2 inhibitors affect skeletal muscle mass and function is a matter of concern. However, how SGLT2 inhibition affects the skeletal muscle function in patients with diabetes remains insufficiently explored. We aimed to explore the effects of canagliflozin (CANA), an SGLT2 inhibitor, on skeletal muscles in genetically diabetic db/db mice focusing on the differential responses of oxidative and glycolytic muscles.MethodsDb/db mice were treated with CANA for 4 weeks. We measured running distance and handgrip strength to assess skeletal muscle function during CANA treatment. At the end of the experiment, we performed a targeted metabolome analysis of the skeletal muscles.ResultsCANA treatment improved the reduced endurance capacity, as revealed by running distance in db/db mice (414.9 ± 52.8 vs. 88.7 ± 22.7 m, P < 0.05). Targeted metabolome analysis revealed that 5‐aminoimidazole‐4‐carboxamide‐1‐β‐D‐ribofuranosyl 5′‐monophosphate (AICARP), a naturally occurring AMP‐activated protein kinase (AMPK) activator, increased in the oxidative soleus muscle (P < 0.05), but not in the glycolytic extensor digitorum longus muscle (P = 0.4376), with increased levels of AMPK phosphorylation (P < 0.01).ConclusionsThis study highlights the potential role of the AICARP/AMPK pathway in oxidative rather than glycolytic skeletal muscles during SGLT2 inhibition, providing novel insights into the mechanism by which SGLT2 inhibitors improve endurance capacity in patients with type 2 diabetes.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Mitsui Sumitomo Insurance Welfare Foundation

Mitsubishi Tanabe Pharma Corporation

Takeda Science Foundation

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3