Aquatic macroinvertebrate abundance in French experimental polyculture fishponds

Author:

Maillot Marie1ORCID,Roucaute Marc1,Jaeger Christophe1,Aubin Joël1ORCID

Affiliation:

1. INRAE, UMR Sol Agro et Hydrosystème Spatialisation Rennes France

Abstract

Abstract Ponds host a variety of invertebrate species and contribute greatly to global biodiversity. Aquaculture influences macroinvertebrate diversity and productivity in ponds through several practices, such as macrophyte and water management. Fish stocking is also considered controversial for preserving biodiversity through the direct predation upon natural species and changes induced on the biotope. An experiment examined whether compartmentalized ponds with temporarily fish‐free areas had higher fish productivity and macroinvertebrate abundance and diversity than open ponds. The experimental design consisted of two treatments—compartmentalized (C) or open (O)—each applied to three ponds. Roach (Rutilus rutilus), tench (Tinca tinca) and common carp (Cyprinus carpio) were stocked in the ponds in March 2021. Juvenile pikeperch (Sander lucioperca) were stocked in the ponds in June. In the C ponds, three areas were created and opened successively: (C1) corresponding to ¼ of the pond surface to host roach, tench and common carp from March to May; (C2) ¼ of the pond surface restricted to fish from March to May; and (C3) ½ of the surface restricted to fish from March to July, except for juveniles of pikeperch which were stocked in June. We investigated patterns in abundance, dry biomass and productivity of macroinvertebrates four times from March to October. This article presents observed macroinvertebrate abundances and weighted dry biomass, and productivity estimated from them. Overall, 77,749 individuals were identified, of which one‐third were Chironomini and another one‐third were Oligochaeta. The invasive red swamp crayfish (Procambarus clarkii) was found in one pond in October. The two highest taxonomic richness values were found in C ponds (71 and 69 taxa). The lowest taxonomic richness (61 taxa) was in an O pond. Although dry biomass was clearly higher in the C ponds in March, no tendency could be seen between C and O ponds throughout the experiment. No difference in productivity was found between the C and O ponds among the experiment. By reporting macroinvertebrate abundance, biomass, productivity, size classes, developmental stages and high‐resolution taxonomic identification in a freshwater polyculture system, this dataset is one of the first of its kind.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3