UAV‐derived greenness and within‐crown spatial patterning can detect ash dieback in individual trees

Author:

Flynn W. R. M.12ORCID,Grieve S. W. D.13,Henshaw A. J.1,Owen H. J. F.4,Buggs R. J. A.56,Metheringham C. L.56,Plumb W. J.567,Stocks J. J.56,Lines E. R.5ORCID

Affiliation:

1. School of Geography Queen Mary University of London London UK

2. Department of Plant Sciences University of Cambridge Cambridge UK

3. Digital Environment Research Institute Queen Mary University of London London UK

4. Department of Geography University of Cambridge Cambridge UK

5. School of Biological and Behavioural Sciences Queen Mary University of London London UK

6. Royal Botanic Gardens, Kew Richmond upon Thames UK

7. Forestry Development Department Dublin Republic of Ireland

Abstract

Abstract Ash Dieback (ADB) has been present in the UK since 2012 and is expected to kill up to 80% of UK ash trees. Detecting and quantifying the extent of ADB in individual tree crowns (ITCs), which is crucial to understanding resilience and resistance, currently relies on visual assessments which are impractical over large scales or at high frequency. The improved imaging capabilities and declining cost of consumer UAVs, together with new remote sensing methods such as structure from motion photogrammetry (SfM) offers potential to quantify the fine‐scale structural and spectral metrics of ITCs that are indicative of ADB, rapidly, and at low‐cost. We extract high‐resolution 3D RGB point clouds derived from SfM of canopy ash trees taken monthly throughout the growing season at Marden Park, Surrey, UK, a woodland impacted by ADB. We segment ITCs, extract green chromatic coordinate (gcc), and test the relationship with visual assessments of crown health. Next, we quantify spatial patterning of dieback within ITCs by testing the relationship between internal variation of gcc and path length, a measure of the distance from foliage to trunk, for small clusters of foliage. We find gcc correlates with visual assessments of crown health throughout the growing season, but the strongest relationships are in measurements taken after peak greenness, when the effects of ADB on foliage are likely to be most prevalent. We also find a negative relationship between gcc and path length in infected trees, indicating foliage loss is more severe at crown extremities. We demonstrate a new method for identifying ADB at scale using a consumer‐grade 3D RGB UAV system and suggest this approach could be adopted for widespread rapid monitoring. We recommend the optimum time of year for data acquisition, which we find to be an important factor for detecting ADB. Although here applied to ADB, this framework is applicable to a multitude of drivers of crown dieback, presenting a method for identifying spectral‐structural relationships which may be characteristic of disturbance type.

Funder

UK Research and Innovation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3