Advances and critical assessment of machine learning techniques for prediction of docking scores

Author:

Bucinsky Lukas1ORCID,Gall Marián23,Matúška Ján1,Pitoňák Michal34ORCID,Štekláč Marek15

Affiliation:

1. Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava Bratislava Slovak Republic

2. Institute of Information Engineering, Automation and Mathematics, Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava Bratislava Slovak Republic

3. Computing Centre Centre of Operations of the Slovak Academy of Sciences Bratislava Slovak Republic

4. Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovak Republic

5. Slovak National Supercomputing Centre Bratislava Slovak Republic

Abstract

AbstractHere we present three distinct machine learning (ML) approaches (TensorFlow, XGBoost, and SchNetPack) for docking score prediction. AutoDock Vina is used to evaluate the inhibitory potential of ZINC15 in‐vivo and in‐vitro‐only sets towards the SARS‐CoV‐2 main protease. The in‐vivo set (59 884 compounds) is used for ML training (max. 80%), validation (5%), and testing (15%). The in‐vitro‐only set (174 014 compounds) is used for the evaluation of prediction capability of the trained ML models. Contributions to the prediction error are analyzed with respect to compounds' charge, number of atoms, and expected inhibitory potential (docking score). Methods for the prediction error estimation of new compounds are considered, yet critically rejected. The ML input weighted with respect to the desired property (i.e., low docking score) in the machine learning models shows to be a promising option to improve the ML performance. Proposed models provide significant reduction in number of intriguing compounds that need to be investigated.

Funder

Agentúra na Podporu Výskumu a Vývoja

European Regional Development Fund

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3