A comparison of physical, morphological, and mechanical properties of bio‐polyester hybrid nanocomposites

Author:

Rath Abjesh Prasad12,Krishnan P. Santhana Gopala34ORCID,Kanny Krishnan2

Affiliation:

1. Laboratory for Advanced Research in Polymeric Materials (LARPM), School for Advanced Research in Petrochemicals (SARP) Central Institute of Petrochemicals Engineering and Technology (CIPET) Bhubaneswar India

2. Composites Research Group, Department of Mechanical Engineering Durban University of Technology Durban South Africa

3. Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP) Central Institute of Petrochemicals Engineering and Technology (CIPET) Bengaluru India

4. Faculty of Engineering and the Built Environment, Durban University of Technology Durban South Africa

Abstract

AbstractIt is imperative to improve the physical, morphological, and mechanical properties of biodegradable polymers like polylactic acid (PLA), poly (butylene adipate‐co‐terephthalate) (PBAT), and polycaprolactone (PCL) in order to employ them on a larger scale. The development of hybrid nanocomposite materials using nano inclusions can improve desired qualities. Here we introduced an interactive nano reinforcement approach to improve the properties by combining graphene oxide (GO) and carboxyl functionalized MWCNT (f‐MWCNT), to provide for their chemical bonding for synergic reinforcement. A constant filler 2 wt.% was added to the biopolyesters by melt blending process and examined the different physical properties like water absorption, intrinsic viscosity, and hardness. To completely evaluate the functionalization of the nanofillers, wide‐angle X‐ray diffraction (WAXD), Raman spectroscopy and Fourier transform infrared radiation (FTIR) analyses were used. The paired nanoparticles and polymer matrix appear to mix well together, as shown by electron microscopy, which also reveals good dispersion and the creation of a reinforcing network microstructure across the matrix layer. A thorough analysis of the results showed that effective stress transmission, delaying the start of faults and generating microcracks, and dissipating additional mechanical energy all contributed to efficient hybrid network formation, which improved the mechanical properties of hybrid filler nanocomposites except some nanocomposites. These findings offer a viable technique for chemically altering biodegradable polymers, like PLA, PBAT, and PCL for use in biomedical, wastewater management, and agricultural applications.

Funder

Department of Chemicals and Petrochemicals, Ministry of Chemicals and Fertilizers, India

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3