Effect of the shape of hydrogel samples on their stretch‐fracture properties

Author:

Feng Shi1ORCID,Liu Zhihan1ORCID,Yang Jing1ORCID,Liu Yuwei2ORCID,Yan Meiling1ORCID,Xiang Xu1ORCID

Affiliation:

1. School of Materials Science and Engineering Chongqing Jiaotong University Chongqing People's Republic of China

2. Department of Polymer Science and Engineering Zhejiang University Hangzhou People's Republic of China

Abstract

AbstractHydrogels have broad application prospects, but the measurement of their mechanical properties often lacks stability. This study investigates the mechanical properties of hydrogels, with a specific focus on the influence of sample geometry on the tensile‐fracture testing results. In the process of stretching the hydrogel along its length, increasing the width and thickness will result in uneven stress distribution. When the width of PAM hydrogel is three times that of initial sample (5 mm of width), the elastic modulus, maximum stress, and maximum strain of PAM hydrogel are reduced by about 16.8%, 69.2%, and 26.5%, respectively. Similarly, compared to the initial sample (1 mm of thickness), the elastic modulus of the triple thickness sample was reduced by about 6.5%, the maximum stress was reduced by 31%, and the maximum strain was reduced by 18.3%. In contrast, increasing the length of the hydrogel can improve the tensile properties of the hydrogel. Finite element calculations support these findings that the size increase in the loading direction improves the stress dispersion uniformity. These results indicate that the shape (length, width and thickness) of the hydrogel sample affects the tensile properties of the hydrogel and should be paid attention in related studies.

Funder

Chongqing Municipal Science and Technology Bureau

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3