Preparation and performance study of modified soybean oil polyurethane foam used for soccer equipment

Author:

Zhang Jincheng1ORCID,Hao Ruoyu2,Tian Xiaoke1,Hao Tonghui3ORCID

Affiliation:

1. Graduate Department Xi'an Physical Education University Xian China

2. Data Center EastMoney Information Co., Ltd. Shanghai China

3. Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering Hubei University Wuhan China

Abstract

AbstractSoccer is known as the world's largest sport and has a wide range of players. Most of the materials used in existing football equipment are polyurethane extracted from petrochemical resources, which are gradually reduced and non‐renewable. Finding an alternative new material is an inevitable trend. Soybean oil (SO) was quantitatively transformed into polyols to afford industrially important high resilience flexible polyurethane foam(HR‐PUF). Photoinduced thiol‐ene click chemistry was investigated for the efficient preparation of modified soybean oil polyols (MESO) with primary hydroxyl groups. In order to improve the reaction efficiency and the degree of carbon–carbon double bonds functionalization, reduce reaction time, we have chosen a step‐by‐step method of adding. The effects of different reaction times and [thiol]/[ene] ratios on conversion and degree of functionalization were discussed. It is realized that under room temperature conditions, after 12 h of reaction, the carbon–carbon double bond of SO is almost completely converted and quantitatively converted into a hydroxyl group to a degree of 89%. The corresponding HR‐PUFs were prepared by mixing MESO with L2000 (Polyether Polyol). The effect of the difference in the amount of MESO added to the foam properties was investigated. Through the apparent density and a scanning electron microscope (SEM), it can be concluded that with the amount of MESO added increases, the cell size, opening ratio and the number of cells of HR‐PUF are decreased, the density is increased. Through thermogravimetric analysis (TGA) and dynamic thermomechanical analysis (DMA), it was proved that the thermal stability of the foam increased with the addition of MESO. Through 40% compression strength (CLD40%), ball rebound experiments, and static compression experiment. It is proved that the increase of the addition of MESO, the rebound resilience of HR‐PUF can be improved.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3