Holocene hydroclimate in highland Costa Rica: new evidence from hydrogen and carbon isotopes in n‐alkanes of terrestrial leaf waxes in a 10 000‐year sediment profile

Author:

Kerr Matthew T.1,Horn Sally P.1ORCID,Lane Chad S.2

Affiliation:

1. Department of Geography & Sustainability University of Tennessee Knoxville TN USA

2. Department of Earth and Ocean Sciences University of North Carolina Wilmington NC USA

Abstract

ABSTRACTWe conducted compound‐specific stable hydrogen (δD) and carbon (δ13C) isotope analysis on n‐alkanes from terrestrial leaf waxes preserved in a 10 000‐year sediment profile from Lago de las Morrenas 1 (9.4925° N, 83.4848° W, 3480 m), a glacial lake on the Chirripó massif of the Cordillera de Talamanca in Costa Rica. Our results demonstrate millennial‐scale variations in hydroclimate across the Holocene, with drier than average conditions in the highlands during the early Holocene, but with gradually increasing precipitation; mesic conditions during the middle Holocene with a gradual drying trend; and highly variable conditions during the late Holocene. This general pattern is punctuated by several centennial‐scale manifestations of global climate events, including dry conditions during the 8200, 5200 and 4200 cal a  bp events and the Terminal Classic Drought (1200–850 cal a  bp). Our δ13C analyses demonstrate that carbon isotope signals are responding to changes in hydroclimate at the site and reinforce prior interpretations of a stable páramo plant community that established following deglaciation and persisted throughout the Holocene. The shifts in hydroclimate inferred from analyses of n‐alkanes in Lago de las Morrenas 1 sediments show correspondence with charcoal records in multiple lakes, with fires most common during drier intervals.

Funder

University of Tennessee, Knoxville

National Geographic Society

University of North Carolina Wilmington

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3