Normal variants and artifacts: Importance in EEG interpretation

Author:

Amin Ushtar1ORCID,Nascimento Fábio A.2ORCID,Karakis Ioannis3ORCID,Schomer Donald4,Benbadis Selim R.1ORCID

Affiliation:

1. University of South Florida, Department of Neurology Tampa Florida USA

2. Department of Neurology, Washington University School of Medicine St. Louis Missouri USA

3. Emory University School of Medicine – Neurology Atlanta Georgia USA

4. Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School Boston Massachusetts USA

Abstract

AbstractOverinterpretation of EEG is an important contributor to the misdiagnosis of epilepsy. For the EEG to have a high diagnostic value and high specificity, it is critical to recognize waveforms that can be mistaken for abnormal patterns. This article describes artifacts, normal rhythms, and normal patterns that are prone to being misinterpreted as abnormal. Artifacts are potentials generated outside the brain. They are divided into physiologic and extraphysiologic. Physiologic artifacts arise from the body and include EMG, eyes, various movements, EKG, pulse, and sweat. Some physiologic artifacts can be useful for interpretation such as EMG and eye movements. Extraphysiologic artifacts arise from outside the body, and in turn can be divided into the environments (electrodes, equipment, and cellphones) and devices within the body (pacemakers and neurostimulators). Normal rhythms can be divided into awake patterns (alpha rhythm and its variants, mu rhythm, lambda waves, posterior slow waves of youth, HV‐induced slowing, photic driving, and photomyogenic response) and sleep patterns (POSTS, vertex waves, spindles, K complexes, sleep‐related hypersynchrony, and frontal arousal rhythm). Breach can affect both awake and sleep rhythms. Normal variants or variants of uncertain clinical significance include variants that may have been considered abnormal in the early days of EEG but are now considered normal. These include wicket spikes and wicket rhythms (the most common normal pattern overread as epileptiform), small sharp spikes (aka benign epileptiform transients of sleep), rhythmic midtemporal theta of drowsiness (aka psychomotor variant), Cigánek rhythm (aka midline theta), 6 Hz phantom spike–wave, 14 and 6 Hz positive spikes, subclinical rhythmic epileptiform discharges of adults (SREDA), slow‐fused transients, occipital spikes of blindness, and temporal slowing of the elderly. Correctly identifying artifacts and normal patterns can help avoid overinterpretation and misdiagnosis. This is an educational review paper addressing a learning objective of the International League Against Epilepsy (ILAE) curriculum.

Publisher

Wiley

Subject

Neurology (clinical),Neurology,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3