Affiliation:
1. Department of Paediatrics University of Oxford Oxford UK
2. Department of Experimental Cardiology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
3. Department of Biochemistry and Chemistry La Trobe Institute for Molecular Science La Trobe University Bundoora Victoria Australia
4. Institute for Health and Sport Victoria University Melbourne Victoria Australia
5. CDL Research University Medical Center Utrecht Utrecht The Netherlands
Abstract
AbstractExtracellular vesicles (EVs) are cell derived membranous nanoparticles. EVs are important mediators of cell–cell communication via the transfer of bioactive content and as such they are being investigated for disease diagnostics as biomarkers and for potential therapeutic cargo delivery to recipient cells. However, existing methods for isolating EVs from biological samples suffer from challenges related to co‐isolation of unwanted materials such as proteins, nucleic acids, and lipoproteins. In the pursuit of improved EV isolation techniques, we introduce multimodal flowthrough chromatography (MFC) as a scalable alternative to size exclusion chromatography (SEC). The use of MFC offers significant advantages for purifying EVs, resulting in enhanced yields and increased purity with respect to protein and nucleic acid co‐isolates from conditioned 3D cell culture media. Compared to SEC, significantly higher EV yields with similar purity and preserved functionality were also obtained with MFC in 2D cell cultures. Additionally, MFC yielded EVs from serum with comparable purity to SEC and similar apolipoprotein B content. Overall, MFC presents an advancement in EV purification yielding EVs with high recovery, purity, and functionality, and offers an accessible improvement to researchers currently employing SEC.
Funder
European Research Council
Biotechnology and Biological Sciences Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献