Experimental study on the quantitative evaluation of the thermal stability performance and heat insulation characteristics of fire‐fighting foam

Author:

Wang Zhengyang1,Jiang Xuepeng12ORCID,Yang Chaojun1,Wang Dezheng3,Zhou Biao3ORCID,Wang Wei4ORCID

Affiliation:

1. School of Resource and Environmental Engineering Wuhan University of Science and Technology Wuhan China

2. Research Center of Fire Safety Wuhan University of Science and Technology Wuhan China

3. College of Emergency Management and Safety Engineering China University of Mining and Technology (Beijing) Beijing China

4. Shanghai Fire Science and Technology Research Institute of MEM Shanghai China

Abstract

AbstractFoam extinguishing agents are crucial for the suppression of flammable liquid fires. Their thermal stability performance and heat insulation characteristics are critical indicators to evaluate the efficiency of the fire‐fighting foam. There have been some studies focused on exploring the behavior of fire‐fighting foams exposed to radiant heating. However, the decay mechanisms and heat transfer behaviors of the foam at the micro‐scale are still unclear and require further clarification. Therefore, in this study, the volume reduction coefficient, falling time of foam column height, and the temperature profiles of the foam layer under the thermal radiation environment of different conditions are discussed. The results indicate that the high temperature generated by the radiative heat flux will accelerate the collapse rate of the foam layer. The stability of the foam structure will be seriously damaged. There is a relationship between heat radiation intensity and foam attenuation coefficient. The empirical model for reflecting the fire‐fighting foam collapse process under the fire environment with high heat radiation flux is modified. Moreover, the average collapse rate and temperature difference gradient are used to characterize the thermal stability performance and heat insulation characteristics of the foam. Analysis of the micro‐scale foam structure parameters from the foam scans has revealed that the thermal stability performance and heat insulation characteristics of the foam are stronger when the surface tension of the foam is within the range of 17.4–20.4 mN/m.

Funder

Key Research and Development Program of Jiangxi Province

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Department

Publisher

Wiley

Subject

Metals and Alloys,Polymers and Plastics,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3