A hierarchical method and workflow for the semi‐automated mapping of valley bottom geomorphic units using publicly available remote sensing datasets

Author:

Zhang Nuosha1ORCID,Fryirs Kirstie1ORCID

Affiliation:

1. School of Natural Sciences Macquarie University North Ryde NSW Australia

Abstract

AbstractGeomorphic units (GUs) are the landforms that make up the valley bottom and are produced by fluvial processes that determine river structure and function. Mapping of GUs can be used to interpret river type and behaviour and to analyse river condition and recovery processes. The advancement of remote sensing technologies and big‐data acquisition are enabling the development and operationalisation of tools to semi‐automate the mapping of assemblages of GUs across large spatial areas. In this study, we develop a hierarchical method that combines a landscape classification approach (Geomorphons) with supervised classification using light detection and ranging data (LiDAR) and satellite images to semi‐automate the mapping of GUs across valley bottoms. We have also produced a new method for identifying and mapping pools in the absence of bathymetry data. We applied our method on 78 river sections in coastal catchments of NSW, Australia. We were able to identify 20 refined GU types and four further sub‐types of bank‐attached bars. Our method produced GU maps that are consistent with desktop manual delineation from aerial images and digital elevation models. Our hierarchical method offers GU maps with varying accuracy and resolution, accommodating a user's decisions regarding amount of effort invested relative to map quality and accuracy required. Initial runs produce maps with 12 preliminary GUs with 61%–75% consistency when compared to desktop manual mapping. With additional effort and manual corrections, a higher level of GU identification is possible (i.e. refined GU mapping increases the consistency to 70%–81%). The delineation of more intricate sub‐types of GU or sub‐units on compound GUs, which is essential for interpretation of river behaviour, condition, and recovery, still requires on‐site field verification to achieve the best results.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3