Deep code search efficiency based on clustering

Author:

Liu Kun1ORCID,Liu Jianxun1ORCID,Hu Haize1

Affiliation:

1. School of Computer Science and Engineering Hunan University of Science and Technology Xiangtan China

Abstract

AbstractThe deep‐learning based code search model mainly takes accuracy as the only target for judging the performance of the model, ignoring the efficiency of code search. This article proposes a clustering‐based code search model (C‐DCS). C‐DCS uses the K‐Means to divide the code vector base into K clusters and obtains the center vectors of K clusters. While searching, C‐DCS first matches the query vector with the K center vectors to get the best matching center vector. After matching the center vector, C‐DCS matches the query vector with code vectors in the cluster corresponding to the best matching center vector one by one and then gets the best matching code snippet vector. To verify the efficiency of C‐DCS in the code search task, experimental analysis was built on a large dataset. The experimental results showed that C‐DCS saves 92.2% of the search time compared to the baseline model while remaining the accuracy. In the experimental evaluation section, we optimized the K‐Means algorithm to improve the code search efficiency of C‐DCS further, reducing the search time to 93.8% of the baseline model. Hence, C‐DCS reduces the code search time greatly with not affecting the accuracy, improving the efficiency of software development.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3