Affiliation:
1. Faculty of Physics Warsaw University of Technology Warsaw Poland
2. Faculty of Advanced Technologies and Chemistry Military University of Technology Warsaw Poland
3. Faculty of Chemistry Warsaw University of Technology Warsaw Poland
4. Faculty of Material Science and Engineering Warsaw University of Technology Warsaw Poland
Abstract
AbstractContemporary applications require protection against overheating and electromagnetic radiation interference, preferably with reduced mass and enhanced basic performance, such as flammability or chemical or UV resistance and often also low or non‐electrically conductive. Materials exhibiting all these functions can be designed, but there is usually not just one but several different materials with advanced processing requirements; therefore, a simple manufacturing method providing percolation path formation involving powder mixing and hot pressing of providing excellent flexibility terpolymer comprising tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride monomeric units (THV)‐based nanocomposites is presented here. The addition of the graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) significantly improves the EMI shielding effectiveness, up to SETOT = 23 dB for the GNP filler, SETOT = 17 dB for the MWCNT/GNP filler per 1 mm samples thickness and enhances almost 900% the thermal conductivity to almost 2 W/mK per GNP filler. Besides this improvement, the electrical conductivity remains at a low level, not surpassing 1.5 S/cm, which is, as mentioned above, beneficial in many applications, especially thermal management. Moreover, the proposed material is an excellent alternative to flexible foam or sponges.Highlights
Structural, electrical, EMI shielding, and thermal properties of flexible THV/GNP, THV/MWCNT, and THV/MWCNT/GNP nanocomposites are shown here.
The oriented, long as over 1 mm filler paths are observed.
The GNP filler provides the best thermal conductivity enhancement of over 800% compared to bare polymer.
The EMI shielding effectiveness is dominated by absorption for all THV‐based nanocomposites.
The electrical conductivity follows the power law, reaching σ = 1.49 S/cm for GNP‐filled nanocomposites.
Funder
Wojskowa Akademia Techniczna
Narodowe Centrum Badań i Rozwoju
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献