Fully automated radiosynthesis of [18F]mG4P027 for mGluR4 imaging

Author:

Moon Sung‐Hyun1,El Fakhri Georges1,Zhang Zhaoda2,Brownell Anna‐Liisa1,Wang Junfeng1ORCID

Affiliation:

1. Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA

2. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA

Abstract

AbstractBackgroundFluorine‐18 labeled N‐(4‐chloro‐3‐(((fluoro‐18F)methyl‐d2)thio)phenyl)picolinamide, [18F]mG4P027, is a potent positron emission tomography (PET) radiotracer for mGluR4. Our previous in vitro and in vivo evaluations have demonstrated that this tracer is promising for further translational studies. However, automated radiosynthesis process poses significant challenges that need to be addressed.MethodsThe automated radiosynthesis was performed using the TRACERlab FX2N module, which comprises two distinct reactors capable of accommodating the two‐step reactions. Several problem‐solving strategies were employed to overcome challenges during the automation process. This included modifications to the reaction solvents, reaction conditions, use of a scavenger, drying methods, and the handling of the precursor.ResultsThe use of n‐Bu4NN3 for scavenging excess compound 1 along with an efficient drying procedure played a key role in the success of the radiosynthesis. The water was successfully removed by using a different duct to overcome the water sensitivity for the second reaction.ConclusionsSignificant modifications were made to the manual process by carefully examining this process and addressing the root causes of the challenges associated with its automation. We successfully implemented automated radiosynthesis using the TRACERlab FX2N module and consequently, obtained a high‐purity radiolabeled [18F]mG4P027 in high yield, meeting the requirements for future human studies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3