Energy community with shared photovoltaic and storage systems: influence of power demand in cost optimization

Author:

De Blasis Riccardo1ORCID,Pacelli Graziella1,Vergine Salvatore1ORCID

Affiliation:

1. Department of Management Marche Polytechnic University Ancona Italy

Abstract

AbstractEnergy management of distributed energy resources has gradually become a complex problem because of the intermittent nature of renewable energy sources, such as photovoltaic power, and the large use of energy storage systems. A way to deal with these issues is to operate within an energy community. However, the efficient management of the community in terms of costs is particularly relevant. Specifically, the minimization of the energy community costs, which consists of properly utilizing shared energy storage and renewable energy sources, becomes an important objective. In this context, a fundamental role is played by demand power characteristics which strongly influence the benefits brought by this energy management scheme. This work investigates the influence of the variability of power demand on the minimization of the operating cost problem of an energy community while determining the optimal capacity of the energy storage system that increases the self‐consumption potential of the photovoltaic source. Two main scenarios are implemented where the effects of considering the community photovoltaic capacity as a variable or a parameter on costs and energy storage system size are investigated. This analysis consists of a multi‐objective optimization coupled with a Monte Carlo framework. The community management is conducted by considering random power demand profiles of each unit belonging to the same community, and different sizes, categories of users and users' aggregations. A comparison is led among different users' categories in terms of costs, photovoltaic unit and energy storage system size. The results provide an overview of how each category benefits from taking part in an energy community both in terms of cost and energy storage and photovoltaic sizes and show how these aspects change within a multi‐category aggregation where each category makes a different contribution to the community. In particular, we find evidence of the “synergy effect” brought by multi‐category aggregations capable of exploiting differences in consumption profiles. Each building category, with its numerosity, has a different effect on the energy community, resulting in a different impact on total costs and cost savings. We also investigate how the energy storage system capacity is affected by both the available photovoltaic capacity and the consumption profiles of the categories within the energy community.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3