Direct observation of the fracture behavior of the polyether ketone ketone (PEKK) spherulites

Author:

Marinosci Vanessa12,Chen Kuan3,Helthuis Nick G. J.1,Grouve Wouter J. B.1,de Vries Erik G.1,Bao Ningzhong3,Akkerman Remko12,de Rooij Matthijn B.1,Chu Liangyong13ORCID

Affiliation:

1. Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology University of Twente Enschede The Netherlands

2. ThermoPlastic composites Research Center (TPRC) Enschede The Netherlands

3. State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China

Abstract

AbstractThis article reports the direct observation of the fracture of individual poly‐ether‐ketone‐ketone (PEKK) spherulites. A single layer of PEKK spherulites was obtained by bonding a PEKK film in‐between two sandblasted Ti alloy plates using an autoclave. The crack of an individual PEKK spherulite was achieved by opening the Ti/PEKK/Ti sandwich using a double cantilever beam test. The fracture morphology of the PEKK spherulite was characterized using scanning electron microscopy and atomic force microscopy. It was found that under tensile stress the crack of the individual spherulite propagates along the middle plane and crosses the nucleation core. This is due to the symmetric radial structure of the spherulite. Moreover, it was found that the fracture surface morphology at the core of the spherulite is strongly influenced by the local crystalline structure, which is anisotropic and determined by the initial nucleation growth direction. As a result, the area fraction experiencing plastic deformation during the fracture of PEKK spherulites at different orientations may vary by an order of 10. Our results show the important role of the initial nucleation growth direction on the mechanical properties of the polymer crystals and may provide a new approach to the design of high‐performance polymer materials with tailored crystalline structures.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3