Wastepaper fiber‐reinforced concrete containing metakaolin: Effect on fracture behavior

Author:

Rezaei Shahmirzadi Mohsen1,Gholampour Aliakbar2ORCID,Hosseini Seyed Amirhossein3,Ngo Tuan D.1,Nematzadeh Mahdi3ORCID

Affiliation:

1. Department of Infrastructure Engineering University of Melbourne Victoria Australia

2. College of Science and Engineering Flinders University South Australia Australia

3. Department of Civil Engineering University of Mazandaran Babolsar Iran

Abstract

AbstractPlasterboard, a commonly utilized construction material, comprises a gypsum core nestled between two paper layers. Gypsum after demolition of plasterboards is a recyclable waste that has been reused into new plasterboard or other purposes such as agricultural products. However, there is a lack of understanding on the potential for recycling the paper layers. This study investigates the use of wastepaper fibers, obtained from the paper layers, as a reinforcing material and metakaolin as a partial cement replacement material in concrete. This study demonstrates the ability of the paper from waste plasterboard for reinforcing concrete. Wastepaper fibers were used at different concentrations ranging from 0 to 2.5% by weight of binder. Bending test was conducted for assessing fracture behavior of concretes, including load bearing capacity, modulus of rupture, crack mouth opening displacement (CMOD) at the load bearing capacity, fracture toughness, and fracture energy. Slump, axial compression, and scanning electron microscopy (SEM) were also conducted on the concretes. It is found that incorporating wastepaper fiber by up to an optimum content of 1.5% results in an increase in the compressive strength (57%), flexural load bearing capacity and modulus of rupture (31%), CMOD displacement at load capacity (14%), fracture toughness (37%), and fracture energy (73%) of the metakaolin‐based concrete. However, further increase in the wastepaper fiber content results in decreased mechanical properties of the concrete, which is due to the fiber agglomeration and non‐uniform distribution within the concrete matrix. Based on the results, the concrete with 20% metakaolin and 1.5% wastepaper fiber experiences similar mechanical properties to the conventional concrete. The results of this study underscore the substantial potential of leveraging waste materials such as wastepaper and by‐products like metakaolin to diminish reliance on conventional cement. This approach not only enhances the mechanical properties of concrete but also fosters sustainable building practices by promoting the recycling of waste materials, reducing carbon footprint, and mitigating the environmental impacts inherent in traditional concrete production.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3