Flexural behavior of corroded RC beams repaired with high performance cementitious mortar under cyclic loading

Author:

Mudadu Antonio1,Prota Andrea1,Menna Costantino1

Affiliation:

1. Department of Structures for Engineering and Architecture (DiSt) University of Naples Federico II Napoli Italy

Abstract

AbstractThe understanding of the cyclic performance of reinforced concrete (RC) elements is of vital importance in relation to the extent of the service life of buildings and infrastructures. Steel rebar corrosion plays a major role in this regard because it significantly affects the overall structural integrity, especially under cyclic loads, leading to reduced stiffness and load‐bearing capacity of structural elements. Cyclic condition has the potential to accelerate the corrosion‐induced cracking and spalling, the effectiveness of the bond strength between rebar and concrete, and also the ductility and energy dissipation characteristics of the structure. The primary objective of this study is to investigate the effectiveness of a high‐performance thixotropic repairing cementitious mortar in improving the fatigue behavior of RC elements through a multiscale experimental approach. First, at the material scale of concrete specimens, two different concrete classes together with the repairing one‐component, pre‐blended, thixotropic cementitious mortar, were tested under incremental cyclic condition. Based on the results obtained from material scale, four reinforced concrete beams were exposed to different levels of accelerated corrosion by means of the impressed current technique and, subsequently, repaired by bonding a layer of the thixotropic high‐performance mortar onto the tension side. Finally, beams were tested under incremental cyclic four‐point bending test to investigate the fatigue behavior in terms of crack onset, propagation and energy dissipation. The resulting cyclic properties and cracking behavior of the structural elements were related to the level of corrosion achieved through the accelerated test and the effectiveness of the structural repair mortar was proven. In terms of code compliance, the repairing mortar was able to fulfill the requirements of frequent and quasi‐permanent combination of loads, remaining below all the threshold values provided by the Italian NTC2018 and Eurocode.

Publisher

Wiley

Reference34 articles.

1. Methods of accelerating chloride-induced corrosion in steel-reinforced concrete: A comparative review

2. Fatigue flexural behavior of corroded reinforced concrete beams repaired with CFRP sheets;Al‐Hammoud R;J Compos Constr,2011

3. Fatigue life of C‐FRCM strengthened corroded RC continuous beams under multi‐intervention system;Feng R;Compos Struct,2022

4. International Federation for Structural Concrete (FIB).Final Complete Draft Fib Bulletin 65 and 66 March 2012 and April 2012 (2010) Model Code.

5. Corrosion of Steel in Concrete

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3