Effects of bacterial consortium enhanced recycled coarse aggregates on self‐healing concrete immobilized with Bacillus megaterium MTCC 1684 and Bacillus subtilis NCIM 2193

Author:

Bakr Mohd Abu1,Hussain Ahmed2ORCID,Singh Paritosh Kumar1,Singh Birendra Kumar1ORCID,Prajakti 2

Affiliation:

1. Department of Civil and Environmental Engineering Birla Institute of Technology Ranchi India

2. Department of Bioengineering and Biotechnology Birla Institute of Technology Ranchi India

Abstract

AbstractThe strength and durability properties of the recycled aggregate concrete (RAC) have been affected by the cracks and the weak interfacial transition zone (ITZ) of the recycled coarse aggregates (RCA). However, the mechanical and physical features of RCA can be improved by microbially induced calcite precipitation (MICP). Therefore, immobilization techniques were used to protect and maintain the high efficiency of Bacillus bacteria for the formation and precipitation of calcium carbonates in self‐healing concrete over a period of time. The objective of the present study was to show the viability of the immobilized bacterial consortium‐enhanced RCA to form self‐healing cracks. Further, the self‐healing capability of enhanced RCA was investigated along with two other immobilization methods, that is, RCA and hydrated lime and brick powder (HBr)‐immobilized bacteria. The experimental results show that the increase in the bio‐deposition time improved the physical and mechanical properties of the RCA. Further, subsequently 56 days of the healing incubation period, the immobilized consortium‐enhanced RCA concrete specimens completely healed the cracks of width 0.58 mm. However, the equivalent cracks of width 0.56 mm were also recovered by the HBr immobilized bacterial cultures. Furthermore, the field emission scanning electron microscope (FESEM), energy dispersive spectroscopy (EDS) and X‐ray diffraction (XRD) analysis revealed that the existence of precipitation at the crack surface was calcium carbonate with a regular cubic‐shaped and lamellar layer morphology. The outcomes of the current study show that consortium‐enhanced RCA has promising potential to develop self‐healing concrete with self‐repaired and improved durability properties in the concrete construction field.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3