A study on the sulfate erosion deterioration law and damage model of shotcrete in high geothermal tunnels

Author:

Tong Jianjun12ORCID,Xiang Lulu12,Cai Yanshan3,Wang Mingnian12,Ye Pei12,Miao Xingwang12

Affiliation:

1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education Southwest Jiaotong University Chengdu China

2. School of Civil Engineering Southwest Jiaotong University Chengdu China

3. Xinjiang Transportation Planning Survey and Design Institute Co., Ltd. Urumqi China

Abstract

AbstractWhen building a tunnel in an environment rich in high‐temperature hot water, it is particularly necessary to pay attention to the influence of sulfate ions in underground hot water on tunnel shotcrete. In order to study the sulfate erosion mechanism and mechanical properties of shotcrete in a real high‐temperature hot water environment, this study was carried out by setting the curing temperature (20, 40, 60, and 80°C), humidity (55% RH, 95% RH), and erosion age (0, 15, 30, 60, and 90 d) as the test influencing factors; a full combination of dry‐wet cycle test was carried out, and the specimens under different conditions were analyzed macroscopically and microscopically. The results show that with the increase of the number of dry‐wet cycles, the quality of shotcrete increases first and then decreases, and the mechanical properties gradually decrease. In the early stage of erosion, the erosion product is mainly ettringite, and the macroscopic damage is aggregate spalling. In the later stage of erosion, the erosion product is mainly gypsum, and the macroscopic damage is expansion damage. Compared with standard curing, a certain degree of high temperature curing has little effect on the sulfate attack resistance of shotcrete, but when the curing temperature exceeds 60°C, the concrete is seriously damaged. Finally, by constructing the damage model of sulfate attack shotcrete, the variation of compressive strength of shotcrete with age after sulfate attack under different curing conditions was successfully predicted.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3