Shear behavior of stud and SFCBs‐reinforced PBL composite connectors in steel‐concrete structures

Author:

Wu Fangwen1,Zhao Bitong1,Liu Zhuo1,Li Zirun1,He Lanqing1,Fan Zhou2

Affiliation:

1. School of Highway, Institute of Bridge Engineering Chang'an University Xi'an Shaanxi China

2. School of Civil Engineering Southeast University Nanjing China

Abstract

AbstractIn order to fully utilize the advantages of stud and perfobond leiste (PBL) connectors, a new composite shear connector was proposed in which the studs were welded to the H‐beam of the PBL shear connectors. In addition, to further improve the durability performance of the structure, steel‐fiber‐reinforced polymer composite bars (SFCBs) were used to replace steel rebars as penetrating rebars. In this study, the shear behaviors of SFCBs‐reinforced composite shear connectors were investigated by push‐out tests. The effects of the number of studs, the number of holes, and the type of penetrating rebars on the failure mode, load–slip curve, and shear behavior of the composite shear connectors were analyzed. The specimens' failure modes were mainly shearing the studs and crushing the concrete. Increasing the number of studs and holes has resulted in an increase of at least 7.47% in the shear resistance and 12.36% in the stiffness. SFCB had little effect on the shear resistance and reduced the stiffness but could improve ductility, with a maximum improvement of 11.49%. Additionally, a finite element model was established for parametric analysis. The results showed that the diameter of the SFCB and hole had a significant impact on the shear resistance. An equation for calculating the shear resistance based on the contributions of various components has been established that was applicable to composite shear connectors and has good accuracy and applicability.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3