Fire behavior of high‐contents recycled aggregate concrete composite slabs with small openings

Author:

Kefyalew Fetih1,Imjai Thanongsak1,Garcia Reyes2,Son Nguyen Khanh3

Affiliation:

1. School of Engineering and Technology Walailak University Nakhon Si Thammarat Thailand

2. Civil Engineering Stream, School of Engineering University of Warwick Coventry UK

3. Faculty of Materials Engineering Ho Chi Minh City University of Technology Vietnam

Abstract

AbstractRecycled aggregate concrete (RAC) is increasingly being used in the construction of structural elements. However, the performance of RAC elements under fire is usually considered to be inferior to that of normal concrete (NC) elements. This study investigates the fire behavior of RAC composite steel slabs with and without openings. Ten slabs of size of 1.0 m × 2.2 m were cast either with no opening, one or two circular openings, and one or two square openings. Five of the slabs were manufactured with 100% RAC, while the other five slabs were made with NC. The concrete slabs were loaded and subjected to fire tests at a temperature of about 900°C for 120 min. Test results show that RAC composite slabs have lower stiffness (thus larger mid‐span deflections) under fire exposure compared to their counterpart NC slabs. In terms of the recorded temperature–time curves, RAC slabs showed similar performance to that of NC slabs. The ratio of soffit temperature to the temperature at the top of slab was considerably smaller for RAC slabs compared to NC slabs. RAC slabs also showed more spalling than NC slabs. Experimental test results were numerically verified using PyroSim® software with the two showing good agreement. A series of new design charts for composite RAC slabs with desired fire endurance are proposed. This study is expected to promote the wider use of RAC in construction of structural elements, particularly of composite slabs exposed to extreme temperatures.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3