Robust poly(p‐phenylene oxide) anion exchange membranes reinforced with pore‐filling technique for water electrolysis

Author:

Feng Zhiming1ORCID,Gupta Gaurav2,Mamlouk Mohamed3

Affiliation:

1. Chemical Engineering Imperial College London London UK

2. Chemical Engineering Lancaster University Lancaster UK

3. School of Engineering Newcastle University Newcastle upon Tyne UK

Abstract

AbstractMechanical robustness and durability are crucial for anion exchange membranes to guarantee the longevity and consistent performance of AEM water electrolysis (AEMWE) systems. In this study, a composite membrane based on the quaternized poly(p‐phenylene oxide) (QPPO)/polytetrafluoroethylene (PTFE) was developed. This membrane was fabricated by enhancing the QPPO‐based AEM through a pore‐filling technique within a porous PTFE structure. The tensile strength of the composite membrane was increased significantly from 16.5 to 31 MPa. The conductivity of the composite membrane was 6.25 mScm−1 lower than 30 mScm−1 of the QPPO‐based membrane at 20°C, resulting from the low volume fraction of QPPO in the composite membrane. At 40% RH, the net change mass of the composite membrane is 1.59%, much lower than that of QPPO‐based membrane (10.98%) at 40°C. The composite membrane demonstrated a significantly increased lifetime in the working electrolyzer (>200 h) compared with an otherwise identical electrolyzer assembled with a QPPO‐based membrane (50 h).

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3