Highly Reusable Electrochemical Immunosensor for Ultrasensitive Protein Detection

Author:

Singampalli Kavya L.12ORCID,Neal – Harris Camille1ORCID,Yee Cassian3ORCID,Lin Jamie S.4ORCID,Lillehoj Peter B.15ORCID

Affiliation:

1. Department of Bioengineering Rice University Houston TX 77030 USA

2. Medical Scientist Training Program Baylor College of Medicine Houston TX 77030 USA

3. Department of Melanoma Medical Oncology UT MD Anderson Cancer Center Houston TX 77030 USA

4. Section of Nephrology, Division of Internal Medicine UT MD Anderson Cancer Center Houston TX 77030 USA

5. Department of Mechanical Engineering Rice University Houston TX 77005 USA

Abstract

AbstractThe detection and quantification of protein biomarkers in bodily fluids is important for many clinical applications, including disease diagnosis and health monitoring. Current techniques for ultrasensitive protein detection, such as enzyme‐linked immunosorbent assay (ELISA) and electrochemical sensing, involve long incubation times (1.5–3 h) and rely on single‐use sensing electrodes which can be costly and generate excessive waste. This work demonstrates a reusable electrochemical immunosensor employing magnetic nanoparticles (MNPs) and dually labeled gold nanoparticles (AuNPs) for ultrasensitive measurements of protein biomarkers. As proof of concept, this platform is used to detect C‐X‐C motif chemokine ligand 9 (CXCL9), a biomarker associated with kidney transplant rejection, immune nephritis from checkpoint inhibitor therapy, and drug‐associated acute interstitial nephritis, in human urine. The sensor successfully detects CXCL9 at concentrations as low as 27 pg mL−1 within ≈1 h. This immunosensor was also adapted onto a handheld smartphone‐based diagnostic device and used for measurements of CXCL9, which exhibited a lower limit of detection of 65 pg mL−1. Lastly, this work demonstrates that the sensing electrodes can be reused for at least 100 measurements with a negligible loss in analytical performance, reducing the costs and waste associated with electrochemical sensing.

Funder

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3