Complementary Cost‐Effective Electrochemical Platforms for Point‐Of‐Use Biosensing

Author:

Monaco Mason1,Zamani Marjon1,Sarram Ava1,Kuo Chao‐Chi1,Abeyrathne Chathurika2,Li Miaosi2,Furst Ariel L.13ORCID

Affiliation:

1. Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA

2. Universal Biosensors Pty. Ltd. 1 Corporate Ave Rowville Victoria 3178 Australia

3. Center for Environmental Health Sciences Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA

Abstract

AbstractThe COVID‐19 pandemic has illustrated the urgent need for rapid and affordable point‐of‐use diagnostics. Electrochemical biosensors are useful for such applications because they enable quantitative readout and show drastically improved sensitivity compared to prevalent lateral flow technologies. However, to‐date, the poor quality of commercially‐available, mass‐produced electrodes has prohibited the scaled production and commercialization of such biosensors beyond glucose sensing. Low‐cost gold leaf electrodes have previously been developed that can be fabricated with no specialized equipment at the point‐of‐use. These electrodes are more effective for biosensing than prevalent commercially‐available systems. Yet, their manual fabrication can be tedious and is not scalable in its current form. Here, performance of mass‐produced gold electrodes generated using roll‐to‐roll manufacturing is evaluated, offering the potential to scale production. Upon comparison of these electrodes with the gold leaf, it is found that these electrodes are high quality, equivalent to the gold leaf electrodes, and support biosensing applications through the detection of both DNase I and BtsI‐v2 activity with comparable performance. These results demonstrate the role of complementary technologies to achieve point‐of‐use sensing by enabling flexibility between mass‐produced manufacture and on‐site production.

Funder

National Institute of Environmental Health Sciences

DEVCOM Army Research Laboratory

United States Golf Association

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3