Affiliation:
1. Semiconductor Process Technology Group CSIR‐Central Electronics Engineering Research Institute (CSIR‐CEERI) Pilani 333031 India
2. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
3. Functional Materials and Microsystems Research Group and the ARC Centre of Excellence for Transformative Meta‐Optical Systems RMIT University 3001 VIC Melbourne Australia
Abstract
AbstractExhaled breath analysis is considered an effective tool for diagnosing the patient's metabolic status because of its non‐invasive nature. Gas chromatography‐mass spectrometry (GC‐MS) and other mass spectrometry techniques are widely used for exhaled breath analysis. Nevertheless, the requirement of a handheld device for real‐time analysis and rapid processing time of multiple samples leads to advancing infrared (IR) based breath gas sensing techniques. Herein, the IR gas sensing technologies are discussed with a focus on non‐dispersive infrared (NDIR), photoacoustic (PAS), and tunable diode laser absorption spectroscopy (TDLAS) gas sensing technologies because of their highly selective gas detection among compound gases (mixture of VOCs), as well as their corresponding sensing mechanisms and characteristics, for real‐time monitoring of exhaled biomarkers. Carbon dioxide, acetone, ammonia, nitric oxide, methane, and ethylene are the significant biomarkers elaborated in this work with their respective clinical applications and the significance of non‐invasive real‐time monitoring using IR detectors. Challenges in selectivity and clinical trials leads to focus on this review. Current market analysis, present status of different techniques to detect specific biomarkers and other challenges with their possible solutions discussed in this review aid in developing highly selective IR‐based handheld breath VOC analyzers for early diagnosis and screening.
Funder
Central Electronics Engineering Research Institute
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献