Interpretable machine learning model for shear strength estimation of circular concrete‐filled steel tubes

Author:

Mansouri Ali1ORCID,Mansouri Maryam2,Mangalathu Sujith3ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering Science Quchan University of Technology Quchan Iran

2. Department of Civil Engineering, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran

3. Data Analytics Division, Mangalathu, Mylamkulam, Kottarakara Kollam Kerala 691507 India

Abstract

SummaryPrecise estimation of the shear strength of concrete‐filled steel tubes (CFSTs) is a crucial requirement for the design of these members. The existing design codes and empirical equations are inconsistent in predicting the shear strength of these members. This paper provides a data‐driven approach for the shear strength estimation of circular CFSTs. For this purpose, the authors evaluated and compared the performance of nine machine learning (ML) methods, namely linear regression, decision tree (DT), k‐nearest neighbors (KNN), support vector regression (SVR), random forest (RF), bagging regression (BR), adaptive boosting (AdaBoost), gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) in estimating the shear strength of CFSTs on an experimental database compiled from the results of 230 shear tests on CFSTs in the literature. For each model, hyperparameter tuning was performed by conducting a grid search in combination with k‐fold cross‐validation (CV). Comparing the nine methods in terms of several performance measures showed that the XGBoost model was the most accurate in predicting the shear strength of CFSTs. This model also showed superior accuracy in predicting the shear strength of CFSTs when compared to the formulas provided in design codes and the existing empirical equations. The Shapley Additive exPlanations (SHAP) technique was also used to interpret the results of the XGBoost model. Using SHAP, the features with the greatest impact on the shear strength of CFSTs were found to be the cross‐sectional area of the steel tube, the axial load ratio, and the shear span ratio, in that order.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3