Model‐free inversion‐based iterative learning control algorithm with adaptive gain: Achieving superior robustness and convergence

Author:

Kou Zhicheng1ORCID,Sun Jinggao1

Affiliation:

1. Key Laboratory of Smart Manufacturing in Energy Chemical Process East China University of Science and Technology Shanghai China

Abstract

AbstractThe main objective of this work is to address the challenge of simultaneously ensuring robustness and convergence performance in model‐free inversion‐based iterative learning control. Initially, this research provides a mathematical analysis of the sources of errors in the iterative process, followed by proposing a gain design guideline to enhance both convergence speed and the final value error. Based on the gain design guideline, a gain design method associated with the number of iterations is proposed, resulting in a novel model‐free inversion‐based iterative learning control algorithm. Subsequently, a robustness analysis of the proposed algorithm is conducted. Finally, a comprehensive simulation and numerical comparison of the proposed algorithm with existing MFIIC‐like algorithms are presented to demonstrate the superior performance of the proposed control algorithm.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3