Real‐time breast lesion classification combining diffuse optical tomography frequency domain data and BI‐RADS assessment

Author:

Li Shuying1ORCID,Zhang Menghao2,Xue Minghao1,Zhu Quing123ORCID

Affiliation:

1. Department of Biomedical Engineering Washington University in St. Louis St. Louis Missouri USA

2. Department of Electrical & Systems Engineering Washington University in St. Louis St. Louis Missouri USA

3. Department of Radiology Washington University School of Medicine St. Louis Missouri USA

Abstract

AbstractUltrasound (US)‐guided diffuse optical tomography (DOT) has demonstrated potential for breast cancer diagnosis, in which real‐time or near real‐time diagnosis with high accuracy is desired. However, DOT's relatively slow data processing and image reconstruction speeds have hindered real‐time diagnosis. Here, we propose a real‐time classification scheme that combines US breast imaging reporting and data system (BI‐RADS) readings and DOT frequency domain measurements. A convolutional neural network is trained to generate malignancy probability scores from DOT measurements. Subsequently, these scores are integrated with BI‐RADS assessments using a support vector machine classifier, which then provides the final diagnostic output. An area under the receiver operating characteristic curve of 0.978 is achieved in distinguishing between benign and malignant breast lesions in patient data without image reconstruction.

Funder

National Cancer Institute

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3