Texture‐based speciation of otitis media‐related bacterial biofilms from optical coherence tomography images using supervised classification

Author:

Zaki Farzana R.1ORCID,Monroy Guillermo L.1ORCID,Shi Jindou12ORCID,Sudhir Kavya13,Boppart Stephen A.12345ORCID

Affiliation:

1. Beckman Institute for Advanced Science and Technology University of Illinois Urbana‐Champaign Urbana Illinois USA

2. Department of Electrical and Computer Engineering University of Illinois Urbana‐Champaign Urbana Illinois USA

3. Department of Bioengineering University of Illinois Urbana‐Champaign Urbana Illinois USA

4. Carle Illinois College of Medicine University of Illinois Urbana‐Champaign Urbana Illinois USA

5. NIH/NIBIB P41 Center for Label‐free Imaging and Multiscale Biophotonics (CLIMB) University of Illinois Urbana‐Champaign Urbana Illinois USA

Abstract

AbstractOtitis media (OM), a highly prevalent inflammatory middle‐ear disease in children worldwide, is commonly caused by an infection, and can lead to antibiotic‐resistant bacterial biofilms in recurrent/chronic OM cases. A biofilm related to OM typically contains one or multiple bacterial species. OCT has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from bacterial biofilms. The proposed method applied supervised machine‐learning‐based frameworks (SVM, random forest, and XGBoost) to classify multiple species bacterial biofilms from in vitro cultures and clinically‐obtained in vivo images from human subjects. Our findings show that optimized SVM‐RBF and XGBoost classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM‐causing bacterial biofilms through texture analysis of OCT images and a machine‐learning framework, offering valuable insights for real‐time in vivo characterization of ear infections.

Funder

National Institutes of Health

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3