Spatially Directed Pyrolysis via Thermally Morphing Surface Adducts

Author:

Du Chuanshen1,Gregory Paul1,Jamadgni Dhanush U.21,Pauls Alana M.21,Chang Julia J.21,Dorn Rick W.34,Martin Andrew21,Foster E. Johan5,Rossini Aaron J.34,Thuo Martin21ORCID

Affiliation:

1. Materials Science and Engineering Iowa State University Ames IA 50011 USA

2. Materials Science and Engineering North Carolina State University Raleigh NC 27695 USA

3. US Department of Energy Ames National Laboratory Ames IA 50011 USA

4. Department of Chemistry Iowa State University Ames IA 50011 USA

5. Department of Chemical and Biological Engineering University of British Columbia Vancouver V6T 1Z3 BC Canada

Abstract

AbstractCombustion is often difficult to spatially direct or tune associated kinetics—hence a run‐away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface‐then‐core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non‐flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside‐out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm‐ and μm‐diameter tubes from appropriately sized fibers.

Funder

North Carolina State University

National Science Foundation

Canada Foundation for Innovation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3