Efficient Homolytic Cleavage of H2O2 on Hydroxyl‐Enriched Spinel CuFe2O4 with Dual Lewis Acid Sites

Author:

Tian Lei12,Tang Zi‐Jun1,Hao Le‐Yang1,Dai Ting2,Zou Jian‐Ping2,Liu Zhao‐Qing1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou 510006 P. R. China

2. National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization Nanchang Hangkong University Nanchang Jiangxi 330063 P. R. China

Abstract

AbstractTraditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non‐redox hydroxyl‐enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O−O bonds (1.47 Å → 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl‐enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl‐enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale‐up experiment using a continuous flow reactor realizes long‐term stability (up to 600 mL), confirming the tremendous potential of hydroxyl‐enriched CuFe2O4 for practical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3