Crystalline, Porous Helicene Covalent Organic Frameworks

Author:

Yan Qianqian1,Tao Shanshan2,Liu Ruoyang2,Zhi Yongfeng1ORCID,Jiang Donglin2ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Hainan University Haikou 570228 China

2. Department of Chemistry, Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore

Abstract

AbstractHelicenes are a class of fascinating chiral helical molecules with rich chemistry developed continuously over the past 100 years. Their helical, conjugated, and twisted structures make them attractive for constructing molecular systems. However, studies over the past century are mainly focused on synthesizing helicenes with increased numbers of aromatic rings and complex heterostructures, while research on inorganic, organic, and polymeric helicene materials is still embryonic. Herein, we report the first examples of helicene covalent organic frameworks, i.e., [7]Helicene sp2c‐COF‐1, by condensing [7]Helicene dialdehyde with trimethyl triazine via the C=C bond formation reaction under solvothermal conditions. The resultant [7]Helicene sp2c‐COF‐1 exhibits prominent X‐ray diffraction peaks and assumes a highly ordered 2D lattice structure originated from the twisted configuration of [7]Helicene unit. The C=C linked [7]Helicene sp2c‐COF‐1 materials exhibited extended π conjugation and broadly tuned their absorption, emission, redox activity, photoconductivity, and light‐emitting activity, demonstrating rich multifunctionalities and great potentials in developing various applications. This work opens a way to a new family of COFs as well as helicene materials, enabling the exploration of unprecedented π architectures and properties.

Funder

Ministry of Education - Singapore

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3